Total vertex irregularity strength of corona product of some graphs

نویسندگان

  • A. Sudha Department of Mathematics, Wavoo Wajeeha Women’s College of Arts and Science, Kayalpatnam -628 204,Tamil Nadu, India.
  • P. Jeyanthi Research Centre, Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur-628 215, Tamil Nadu, India.
چکیده مقاله:

A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the total vertex irregularity strength for n ≥ 3, m ≥ 2, Pn ⊙ K1, Pn ⊙ K2, Cn ⊙ K2, Ln ⊙ K1, CLn ⊙ K1, P2 ⊙ Cn, Pn ⊙ Km, Cn ⊙ Km

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

total vertex irregularity strength of corona product of some graphs

a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...

متن کامل

On total vertex irregularity strength of graphs

Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.

متن کامل

Total Vertex Irregularity Strength of Certain Classes of Unicyclic Graphs *

A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1, 2, . . . , k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G...

متن کامل

Total vertex irregularity strength of disjoint union of Helm graphs

A total vertex irregular k-labeling φ of a graph G is a labeling of the vertices and edges of G with labels from the set {1, 2, . . . , k} in such a way that for any two different vertices x and y their weights wt(x) and wt(y) are distinct. Here, the weight of a vertex x in G is the sum of the label of x and the labels of all edges incident with the vertex x. The minimum k for which the graph G...

متن کامل

Total Vertex Irregularity Strength of Circular Ladder and Windmill Graphs

Let ( , ) G V E be a simple graph. For a total labeling { } : 1,2,3,..., V E k ∂ ∪ → the weight of a vertex x is defined as ( ) ( ) ( ). xy E wt x x xy ∈ = ∂ + ∂ ∑ ∂ is called a vertex irregular total k-labeling if for every pair of distinct vertices x and y, ( ) ( ). wt x wt y ≠ . The minimum k for which the graph G has a vertex irregular total k-labeling is called the total vertex irregularit...

متن کامل

Total vertex irregularity strength of wheel related graphs

For a simple graph G with vertex set V (G) and edge set E(G), a labeling φ : V (G) ∪ E(G) −→ {1, 2, . . . , k} is called a vertex irregular total klabeling of G if for any two different vertices x and y, their weights wt(x) ∗ The work was supported by the Higher Education Commission Pakistan. 148 A. AHMAD, K.M. AWAN, I. JAVAID AND SLAMIN and wt(y) are distinct. The weight wt(x) of a vertex x in...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 48  شماره 1

صفحات  127- 140

تاریخ انتشار 2016-12-25

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023